COVID-19

Iron dysregulation and inflammatory stress erythropoiesis associates with long-term outcome of COVID-19

  • A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021 (WHO, 2021).

  • Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Taquet, M. et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 18, e1003773 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Group, P.-C. C. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir. Med. 10, 761–775 (2022).


    Google Scholar
     

  • Huang, L. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet 398, 747–758 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augustin, M. et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg. Health Eur. 6, 100122 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Abellan, J. et al. Antibody response to SARS-CoV-2 is associated with long-term clinical outcome in patients with COVID-19: a longitudinal study. J. Clin. Immunol. 41, 1490–1501 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27, 626–631 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tleyjeh, I. M. et al. Long term predictors of breathlessness, exercise intolerance, chronic fatigue and well-being in hospitalized patients with COVID-19: a cohort study with 4 months median follow-up. J. Infect. Public Health 15, 21–28 (2022).

    PubMed 

    Google Scholar
     

  • Lui, D. T. W. et al. Long COVID in patients with mild to moderate disease: do thyroid function and autoimmunity play a role? Endocr. Pract. 27, 894–902 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munipalli, B. et al. Risk factors for post-acute sequelae of COVID-19: survey results from a tertiary care hospital. J. Investig. Med. 71, 896–906 (2023).

    PubMed 

    Google Scholar
     

  • Vasilevskaya, A. et al. Sex and age affect acute and persisting COVID-19 illness. Sci. Rep. 13, 6029 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossa, S. et al. Long COVID 1 year after hospitalisation for COVID-19: a prospective bicentric cohort study. Swiss Med. Wkly https://doi.org/10.4414/SMW.w30091 (2021).

  • Su, Y. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 881–895 (2022).

  • Peluso, M. J. et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Invest. https://doi.org/10.1172/JCI163669 (2023).

  • Ryan, F. J. et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 20, 26 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuwa, H. A. et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med 2, 720–735 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23, 210–216 (2022).

  • Cheong, J. G. et al. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 186, 3882–3902 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Bergamaschi, L. et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 54, 1257–1275 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellmann-Weiler, R. et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J. Clin. Med. https://doi.org/10.3390/jcm9082429 (2020).

  • Bergamaschi, G. et al. Anemia in patients with COVID-19: pathogenesis and clinical significance. Clin. Exp. Med. 21, 239–246 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hippchen, T., Altamura, S., Muckenthaler, M. U. & Merle, U. Hypoferremia is associated with increased hospitalization and oxygen demand in COVID-19 patients. Hemasphere 4, e492 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, A. et al. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Crit. Care 24, 320 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, G., Ganz, T. & Goodnough, L. T. Anemia of inflammation. Blood 133, 40–50 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganz, T. Anemia of inflammation. N. Engl. J. Med. 381, 1148–1157 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Morceau, F., Dicato, M. & Diederich, M. Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm. 2009, 405016 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. S. & Stockwell, B. R. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26, 165–176 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Hin, N., Newman, M., Pederson, S. & Lardelli, M. Iron responsive element-mediated responses to iron dyshomeostasis in Alzheimer’s disease. J. Alzheimer’s Dis. 84, 1597–1630 (2021).

    CAS 

    Google Scholar
     

  • Hanspers, K., Willighagen, E., Slenter, D., Hu, F. & Lupascu, D.-A. Ferroptosis (WP4313) https://www.wikipathways.org/instance/WP4313 (WikiPathways, 2021).

  • Zhou, Z. D. & Tan, E. K. Iron regulatory protein (IRP)–iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 12, 75 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muckenthaler, M. U., Galy, B. & Hentze, M. W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 28, 197–213 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Potts, M. et al. Proteomic analysis of circulating immune cells identifies cellular phenotypes associated with COVID-19 severity. Cell Rep. 42, 112613 (2023).

  • Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chicault, C. et al. Iron-related transcriptomic variations in CaCo-2 cells, an in vitro model of intestinal absorptive cells. Physiol. Genomics 26, 55–67 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Haschka, D. et al. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight https://doi.org/10.1172/jci.insight.98867 (2019).

  • Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peluso, M. J. & Deeks, S. G. Early clues regarding the pathogenesis of long-COVID. Trends Immunol. 43, 268–270 (2022).

  • Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science https://doi.org/10.1126/science.abd4585 (2020).

  • Lanser, L. et al. Dynamics in anemia development and dysregulation of iron homeostasis in hospitalized patients with COVID-19. Metabolites https://doi.org/10.3390/metabo11100653 (2021).

  • Maccio, A. et al. The role of inflammation, iron, and nutritional status in cancer-related anemia: results of a large, prospective, observational study. Haematologica 100, 124–132 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, A., Yu, H. T., Goodnough, L. T. & Nissenson, A. R. Prevalence and outcomes of anemia in rheumatoid arthritis: a systematic review of the literature. Am. J. Med. 116, 50S–57S (2004).

    PubMed 

    Google Scholar
     

  • Rodriguez, R. et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect. Immun. 82, 745–752 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drakesmith, H., Nemeth, E. & Ganz, T. Ironing out ferroportin. Cell Metab. 22, 777–787 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Erslev, A. Humoral regulation of red cell production. Blood 8, 349–357 (1953).

    CAS 
    PubMed 

    Google Scholar
     

  • Dulmovits, B. M. et al. HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood 139, 3181–3193 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil, S. et al. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J. Exp. Med. 215, 661–679 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libregts, S. F. et al. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood 118, 2578–2588 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, L. F. et al. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci. Signal. 12, eaap7336 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, A., Nanton, M. R., O’Donnell, H., Akue, A. D. & McSorley, S. J. Innate immune activation during Salmonella infection initiates extramedullary erythropoiesis and splenomegaly. J. Immunol. 185, 6198–6204 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Paulson, R. F., Hariharan, S. & Little, J. A. Stress erythropoiesis: definitions and models for its study. Exp. Hematol. 89, 43–54 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yarosz, E. L. et al. Cutting Edge: Activation-induced iron flux controls CD4 T cell proliferation by promoting proper IL-2R signaling and mitochondrial function. J. Immunol. 204, 1708–1713 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Frost, J. N. et al. Plasma iron controls neutrophil production andfunction. Sci. Adv. 8, eabq5384 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frost, J. N. et al. Hepcidin-mediated hypoferremia disrupts immune responses to vaccination and infection. Med 2, 164–179 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Slusarczyk, P. et al. Impaired iron recycling from erythrocytes is an early hallmark of aging. eLife 12 https://doi.org/10.7554/eLife.79196 (2023).

  • Dorward, D. A. et al. Tissue-specific immunopathology in fatal COVID-19. Am. J. Respir. Crit. Care Med. 203, 192–201 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baier, M. J. et al. Cardiac iron overload promotes cardiac injury in patients with severe COVID-19. Infection 50, 547–552 (2021).

  • Jacobs, W. et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 7, 3772–3781 (2020).

  • Del Nonno, F. et al. Hepatic failure in COVID-19: is iron overload the dangerous trigger? Cells https://doi.org/10.3390/cells10051103 (2021).

  • Littwitz-Salomon, E. et al. Metabolic requirements of NK cells during the acute response against retroviral infection. Nat. Commun. 12, 5376 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotagiri, P. et al. The impact of hypoxia on B cells in COVID-19. EBioMedicine 77, 103878 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louati, K. & Berenbaum, F. Fatigue in chronic inflammation—a link to pain pathways. Arthritis Res. Ther. 17, 254 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregg, L. P., Bossola, M., Ostrosky-Frid, M. & Hedayati, S. S. Fatigue in CKD: epidemiology, pathophysiology, and treatment. Clin. J. Am. Soc. Nephrol. 16, 1445–1455 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macdonald, J. H., Fearn, L., Jibani, M. & Marcora, S. M. Exertional fatigue in patients with CKD. Am. J. Kidney Dis. 60, 930–939 (2012).

    PubMed 

    Google Scholar
     

  • Rineau, E. et al. Iron deficiency without anemia decreases physical endurance and mitochondrial complex I activity of oxidative skeletal muscle in the mouse. Nutrients https://doi.org/10.3390/nu13041056 (2021).

  • Jauregui-Lobera, I. Iron deficiency and cognitive functions. Neuropsychiatr. Dis. Treat. 10, 2087–2095 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benton, D. Micronutrient status, cognition and behavioral problems in childhood. Eur. J. Nutr. 47, 38–50 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. S., Chao, H. H., Huang, W. T., Chen, S. C. & Yang, H. Y. Psychiatric disorders risk in patients with iron deficiency anemia and association with iron supplementation medications: a nationwide database analysis. BMC Psychiatry 20, 216 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonnweber, T. et al. The impact of iron dyshomeostasis and anaemia on long-term pulmonary recovery and persisting symptom burden after COVID-19: a prospective observational cohort study. Metabolites https://doi.org/10.3390/metabo12060546 (2022).

  • El-Battrawy, I. et al. Thalassaemia is paradoxically associated with a reduced risk of in-hospital complications and mortality in COVID-19: data from an international registry. J. Cell. Mol. Med. 26, 2520–2528 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalra, P. R. et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 400, 2199–2209 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kalra, P. R. et al. Novel predictors of new-onset atrial fibrillation following the event of ST-elevation myocardial infarction. Eur. J. Heart Fail https://doi.org/10.1002/ejhf.2927 (2023).

  • Wang, C. Y. & Babitt, J. L. Hepcidin regulation in the anemia of inflammation. Curr. Opin. Hematol. 23, 189–197 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Eijk, L. T. et al. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 124, 2643–2646 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, M. et al. Increase of hemoglobin levels by anti-IL-6 receptor antibody (tocilizumab) in rheumatoid arthritis. PLoS ONE 9, e98202 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, S. N. et al. Down-regulation of hepcidin resulting from long-term treatment with an anti-IL-6 receptor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman disease. Blood 116, 3627–3634 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Abani, O. et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 397, 1637–1645 (2021).


    Google Scholar
     

  • Wang, M. P., Joshua, B., Jin, N. Y., Du, S. W. & Li, C. Ferroptosis in viral infection: the unexplored possibility. Acta Pharmacol. Sin. 43, 1905–1915 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • The PREVAIL III Study Group et al. A longitudinal study of Ebola sequelae in Liberia. N. Engl. J. Med. 380, 924–934 (2019).

    PubMed Central 

    Google Scholar
     

  • Bond, N. G. et al. Post-Ebola syndrome presents with multiple overlapping symptom clusters: evidence from an ongoing cohort study in Eastern Sierra Leone. Clin. Infect. Dis. 73, 1046–1054 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Long term outcomes in survivors of epidemic Influenza A (H7N9) virus infection. Sci. Rep. 7, 17275 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tansey, C. M. et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch. Intern. Med. 167, 1312–1320 (2007).

    PubMed 

    Google Scholar
     

  • Turner-Stokes, L. et al. The post-ICU presentation screen (PICUPS) and rehabilitation prescription (RP) for intensive care survivors part I: development and preliminary clinimetric evaluation. J. Intensive Care Soc. 23, 253–263 (2022).

    PubMed 

    Google Scholar
     

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

  • Wu, D. & Smyth, G. K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 40, e133 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat. Commun. 13, 2099 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohart, F., Gautier, B., Singh, A. & Le Cao, K. A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *